Roll No:

B.TECH (SEM III) THEORY EXAMINATION 2020-21 ELECTROMAGNETIC FIELD THEORY

Time: 3 Hours

Total Marks: 100

 $2 \ge 10 = 20$

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt *all* questions in brief.

Q no.	Question	Marks	CO
a.	Transform the point $P(-2, 3, 4)$ into cylindrical coordinate system.	2	1
b.	Given two vectors as, $P = (0,6,-9)$ and $Q = (-2,0,3)$. Find projection of	2	1
	P on Q.		
c.	Derive Poisson and Laplace equations.	2	2
d.	What are the time varying fields? Give example.	2	2
e.	Given, $V = 4x3y2 - 3xyz$. Determine the E at (3,-4,5).	2	3
f.	Define relaxation time.	2	3
g.	What is Lorentz force?	2	4
h.	Why the closed surface integration of magnetic flux density is zero and	2	4
	of electric flux density is equal to flux.		
i.	Define skin depth.	2	5
j.	Given, $\eta 1 = 100 \Omega$, $\eta 2 = 300 \Omega$, $= 100 V/m$ Find.	2	5

SECTION B

2. Attempt any *three* of the following:

Q no.	Question	Marks	СО
a.	Verify the divergence theorem for the $D = \rho 2 \cos 2\varphi a\rho + z \sin \varphi a\varphi$	10	1
	over the closed surface of the cylinder $0 \le z \le 1$, $\rho = 4$.		
b.	A wire of diameter 1 mm and conductivity 5 x 107 S/m has 1029 free	10	2
	electrons per cubic meter when an electric field of 10 mV/m is applied.		
	Find:-		
	(i) Charge density of free electrons		
	(ii) Current density		
	(iii) Current in the wire		
c.	State Biot – Savart law and derive an expression for the magnetic field	10	3
	intensity due to infinite straight line current carrying conductor.		
d.	Derive the expression for inductance per unit length of coaxial	10	4
	conductors.		
e.	Show that the intrinsic impedance of free space is 377 or 120π .	10	5

SECTION C

3. Attempt any *one* part of the following:

Q no.	Question	Marks	CO
a.	Given, four point charges of 1 μ C each at (0,0,0), (0,1,0), (0,1,1), (0,0,1 respectively. Find E at (1,1,1).)10	1

1 | Page

Download all NOTES and PAPERS at StudentSuvidha.com

II II I I I I					Sub	ject	Co	le: H	KEE	301
10	Roll No:									

	b.	Derive the expression for energy and energy density in an electric field.	10	1
--	----	---	----	---

4. Attempt any *one* part of the following:

PAPER ID-3111

Q no.	Question	Marks	CO
a.	Given the current density, $J = \frac{1}{r^5} (2 \cos \theta a + \sin \theta a) A/m^2$, find current through a spherical shell of $r = 10$ cm.	10	2
b.	Derive electrostatic boundary conditions for conductor-dielectric interface.	10	2

Attempt any *one* part of the following: 5.

Q no.	Question	Marks	CO
a.	A current of 10 A is flowing from origin to negative infinity along x ax Find the magnetic field produced by it at $(-2, 3, 0)$.	is10	3
b.	Explain the significance of displacement current density.	10	3

Attempt any *one* part of the following: 6.

Q no.	Question	Marks	СО
a.	Derive the expression for magnetic force on a current carrying loop, kep within the magnetic field.	t10	4
b.	Write a note on classification of magnetic materials.	10	4

Attempt any one part of the following: 7.

Q no.	Question	Marks	CO
a.	What is Poynting vector? Derive the Poynting theorem & explain the physical meaning of even integral involved in it.	10	5
b.	The E of an EM wave in free space is given by $E = B_{y_0}e^{An(n-\frac{M}{p})}a_y$. Find the expression for the H by using Maxwell equations.	10	5
	SUU		

Download all NOTES and PAPERS at StudentSuvidha.com